ZrCl₄-Catalyzed scission of ethylene acetals with organoaluminum compounds

O. S. Vostrikova, a* Yu, T. Gafarova, V. A. Dokichev, a and S. S. Zlotskiib

^aInstitute of Organic Chemistry, Ufa Research Center of the Russian Academy of Sciences,
71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.
Fax: +7 (347 2) 35 6066. E-mail: chemorg@bash.ru

^bResearch Institute (of Fine Chemical Products and Reagents) "Reactiv,"
75 ul. Ul'yanovykh, 450029 Ufa, Russian Federation.
Fax: +7 (347 2) 43 1731. E-mail: reaktiv@soros.bashedu.ru

Ethylene acetals and ethylene ketals undergo reductive scission under the action of Bui₃AlH in the presence of catalytic amounts of ZrCl₄. With Et₃Al and Bui₃Al, reductive alkylation also occurs.

Key words: organoaluminum compounds, cyclic acetals, zirconium complexes, catalysis by metal complexes.

It is known¹⁻³ that the C-O bond in ethylene acetals and ethylene ketals is cleaved under the action of $Bu^{i}_{2}AIH$ or $Bu^{i}_{3}AI$ at 60-110 °C. Subsequent hydrolysis of the corresponding aluminates affords ethylene glycol monoethers (route a in Scheme 1).

Scheme 1

1: $R^1 = R^2 = H$; 2, 5: $R^1 = H$, $R^2 = Pr$; 3, 6: $R^1 = H$, $R^2 = Ph$; 4, 7: $R^1 + R^2 = -(CH_2)_5$ —; 8: R = Et, $R^1 = H$, $R^2 = Pr$; 9: $R = Bu^i$, $R^1 = R^2 = H$; 10: $R = Bu^i$, $R^1 = H$, $R^2 = Pr$; 11: $R = Bu^i$, $R^1 = H$, $R^2 = Ph$; 12: $R = Bu^i$, $R^1 = H$, $R^2 = Ph$;

As part of continuing studies of catalytic conversions of organoaluminum compounds (OAC), we found that this process in the presence of $ZrCl_4$ (5 mol.%) in hydrocarbon solvents (hexane or benzene) at room temperature was completed in 20–40 min. Ether-type solvents totally suppress this process, which is typical of conversions of OAC catalyzed by zirconium complexes. The other zirconium compounds tested by us, viz., $ZrOCl_2 \cdot 6H_2O$, $Zr(acac)_4$, and Cp_2ZrCl_2 , do not exhibit analogous catalytic activity. In the presence of TiCl₄, the reaction mixture is resinified.

With $Bu^{i}_{3}Al$, reduction of the initial dioxolanes 2-4 is accompanied by their reductive alkylation (route b in Scheme 1). In the absence of a catalyst, this reaction is typical of only n-alkylalanes, in particular, of $Et_{3}Al.^{5}$ The total yield of the corresponding reaction products was no less than 70%. The exception is formaldehyde acetal (1), which gave only a product of reductive alkyla-

Table 1. Products of the reactions of 1,3-dioxolanes with organoaluminum compounds

Initial acetal	OAC	Reaction products (ratio)	Total yield (%)
1	Bui ₃ Al	9	
2	Bu ⁱ 3Al	5 , 10 (3:1)	76
2	Bu ⁱ zAlH	5	98
2	Et ₃ Ã1	8	98
3	Bui₃AI	6, 11 (4:1)	68
3*	Bui ₃ Al	6, 11 (1:1)	20
4	Bui ₃ Al	7, 12 (5:1)	60

* Acetal : OAC = 1 : 4

tion (9) in a yield of no more than 10%, while the reaction of compound 1 with OAC in the absence of a catalyst did not occur.⁵ It appeared that the composition of the resulting mixture depended on the structures and the ratio of the initial reagents (Table 1). Thus the presence of bulky substituents (R^1 and R^2) at the C(2) atom of dioxolanes 2—4 hinders their reductive alkylation, while acetal 1 gives exclusively alkylation product 9. Analogously, when Et_3Al , containing less bulky substituents, was used instead of Bui_3Al in the reaction with 2-isopropyl-1,3-dioxolane (2), alkylation product 8 was obtained in virtually quantitative yield. Note that analogous regularities were also observed in the reactions of acetals with organomagnesium compounds.⁶

Experimental

All experiments were performed in an atmosphere of dry argon. Organoaluminum compounds were used as 30% solutions in hexane. The initial ethylene acetals 1-4 were synthesized according to a known procedure, distilled under argon, and stored in an inert atmosphere over metallic sodium. The physicochemical constants of compounds 1-4 coincide with the published data. The solvents were distilled in an inert atmosphere over Bu₁₂AIH immediately before use. The GLC analysis was performed on a Chrom-5 chromatograph (flame

ionization detector, 5% SE-30 on Chromaton N-AW as the stationary phase, 1200×5 -mm column, temperature programming from 50 to 300 °C, decane as the internal standard). The ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 spectrometer in CDCl₃ with Me₄Si as the internal standard. Ethylene glycol monoethers 5–12 were isolated by vacuum distillation on a Fisher MMS-155 microcolumn.

Reactions of ethylene acetals with OAC (general procedure). Anhydrous ZrCl₄ (0.2 mmol) was added to a solution of an organoaluminum compound (4 mmol) in hexane at -20 °C. Then 1,3-dioxolane 1-4 (2 mmol) was added dropwise with intense stirring over 30 min. The reaction mixture was diluted with an equal volume of ether, cooled to -10 °C, decomposed with water (4 mL) with stirring, and treated with 5% HCl until the precipitate dissolved. The organic layer was separated, dried with MgSO₄, and analyzed by GLC. The yields and the ratios of products 5-12 are given in Table 1. The compounds synthesized were identified based on the data of elemental analysis and ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy. 2-iso-Butoxyethanol⁹ (5) (b.p. 39—40 °C (4 Torr), n_D^{20} 1.4129), 2-benzyloxyethanol⁵ (6) (b.p. 98 °C (3 Torr), n_D^{20} 1.5269), 2-cyclohexyloxyethanol¹⁰ (7) (b.p. 76 °C (4 Torr), n_D^{20} 1.4606), and 2-(3-methylbutoxy)ethanol⁵ (9) (b.p. 66 °C (10 Torr), n_D^{20} 1.4370) were identified by comparing with the published data. The physical state of 2 (2 to the latent 12 and 13 to 13 to 13 to 14 to 15 to 1 cochemical constants of 2-(2-methylpentan-3-yloxy)ethanol (8), 2-(2,5-dimethylhexan-3-yloxy)ethanol (10), 2-(3-methyl-1-phenylbutoxy)ethanol (11), and 2-(1-isobutylcyclohexyloxy)ethanol (12) are given in Table 2.

Table 2. Spectral data and selected physicochemical characteristics of the synthesized ethylene glycol monoethers

Com- pound	B.p. /°C	n _D ²⁰	Found Calcula	ated	Molecular formula	¹ H NMR, δ, J/Hz	¹³ C NMR, δ
8	72 (10)	1.4279	C 65.70 65.71	H 12.20 12.41	S ₈ H ₁₈ O ₂	0.73 (d, 3 H, CH ₃ , $J = 6.8$); 0.77 (d, 3 H, CH ₃ , $J = 6.9$); 0.80 (t, 3 H, CH ₃ , $J = 7.1$); 1.25—1.42 (m, 2 H, CH ₂); 1.70 (octet. 1 H, CH, $J = 6.6$); 2.83 (q, 1 H, CHO, $J = 6.5$); 3.00 (br.s, 1 H, OH); 3.42 (t, 2 H, CH ₂ O, $J = 4.6$);	9.68 (CH ₃); 18.0 (CH ₃); 18.09 (CH ₃); 22.85 (CH ₂); 30.22 (CH); 61.82 (CH ₂ OH); 70.86 (CH ₂ O); 86.24 (CHO)
10	65—70 (4)	1.4315	68.99 68.92	12.77 12.72	S ₁₀ H ₂₂ O ₂	3.56 (t, 2 H, CH ₂ O, <i>J</i> = 4.6) 0.80 (d, 6 H, CH ₃ , <i>J</i> = 6.7); 0.86 (d, 6 H, CH ₃ , <i>J</i> = 6.7); 1.15 (m, 1 H, CH ₂); 1.38 (m, 1 H, CH ₂); 1.70–1.80 (m, 1 H, CH); 1.80–1.90 (m, 1 H, CH) 3.10–3.20 (m, 1 H, CHO); 3.48 (br.s. 1 H, OH); 3.61 (t, 2 H, CH ₂ O, <i>J</i> = 4.7); 3.69 (t, 2 H, CH ₃ O, <i>J</i> = 4.7)	17.17 (CH ₃); 17.71 (CH ₃); 21.79 (CH ₃); 23.35 (CH ₃); 24.24 (CH-CH ₂); ; 30.19 (CH-CH); 39.26 (CH ₂); 61.52 (CH ₂ OH); 70.60 (CH ₂ O); 82.50 (CH-O)
11	105 (3)	1.5118	74,90 74.96	9.62 9.68	C ₁₃ H ₂₀ O ₂	0.74 (d, 3 H, CH ₃ , $J = 2.66$); 0.76 (d, 3 H, CH ₃ , $J = 2.66$); 1.25 (m, 1 H, CH ₂); 1.53 (m, 1 H, CH ₂); 1.62 (m. 1 H, CH); 3.32 (br.s. 1 H, OH); 3.33 (t, 2 H, CH ₂ O, $J = 4.55$); 3.60 (t, 2 H, CH ₂ O, $J = 4.55$); 4.28 (dd, 1 H, CH—Ar, $J = 5.88$, $J = 6.12$); 7.0—7.2 (m, 5 H, Ar)	22.48 (CH ₃); 24.13 (CH ₃); 47.11 (CH ₂); 61.15 (CH ₂ OH); 71.17 (CH ₂ O); 80.50 (<u>C</u> H—Ar); 126.03 (CH, arom.); 127.24 (2 CH, arom.); 127.82 (2 CH, arom.); 142.43 (<u>C</u> , arom.)
12	110 (4)	1.4649	71.97 71.95	12.00 12.08	S ₁₂ H ₂₄ O ₂	0.75 (d, 6 H, 2 CH ₃ , $J = 6.6$); 1.00–1.25 (m, 4 H, 2 CH ₂); 1.30–1.55 (m, 7 H, 3 CH ₂ , CH); 1.60–1.80 (m, 2 H, CH ₂ –CH); 3.10–3.25 (m, 2 H, CH ₂ O); 3.40–3.55 (m, 2 H, CH ₂ O)	21.35 (CH ₂ of the ring); 25.54 (2 CH ₂ of the ring); 34.49 (2 CH ₂ of the ring); 22.59 (2 CH ₃); 24.59 (CH); 44.59 (CH ₂); 60.67 (CH ₂ OH); 61.76 (CH ₂ O); 75.34 (C—O)

References

1532

- 1. L. I. Zakharkin and I. M. Khorlina, Izv. Akad. Nauk SSSR, Ser. Khim. [Bull. Acad. Sci. USSR, Div. Chem. Sci.], 1959, 2255 (in Russian).
- A. A. Volkov, S. S. Złotskii, E. Kh. Kravets, and D. L. Rakhmankulov, *Dokl. Akad. Nauk SSSR*, 1985, 283, 1194 [Dokl. Chem., 1985 (Engl. Transl.)].
- A. A. Volkov, S. S. Zlotskii, E. Kh. Kravets, and D. L. Rakhmankulov, Zh. Org. Khim., 1986, 22, 1787 [J. Org. Chem. USSR, 1986, 22 (Engl. Transl.)].
- U. M. Dzhemilev, O. S. Vostrikova, and G. A. Tolstikov, Usp. Khim., 1991, 59, 1272 [Russ. Chem. Rev., 1991, 59 (Engl. Transl.)].

- A. A. Volkov, E. Kh. Kravets, S. S. Zlotskii, and D. L. Rakhmankulov, Zh. Prikl. Khim. [J. Appl. Chem.], 1985, 58, 1547 (in Russian).
- 6. L. A. Yanovskaya, S. S. Yufit, and V. F. Kucherov, *Khimiya atsetalei* [*Chemistry of Acetals*], Nauka, Moscow, 1975, 209 pp. (in Russian).
- 7. M. Renoll and M. S. Newmann, in *Organic Syntheses Coll.*, J. Wiley and Sons, New York, 1955, 3, 502.
- 8. Beilsteins Handbook of Organic Chemistry, Ed. R. Luckenbach, Springer, New York, 1987, 19, Ch. 1, 6.
- 9. Svoistva organicheskikh soedinenii. Spravochnik [Properties of Organic Compounds, Handbook], Ed. A. A. Potekhin, Khimiya, Leningrad, 1984, 520 pp. (in Russian).
- H. Ishikawa and T. Mukayama, Bull. Chem. Soc. Jpn., 1978, 51, 2059.

Received September 21, 1998; in revised form March 19, 1999